FOCAL

FOCAL has been available for the 6502 for quite awhile now
and offers some advantages that make it an attractive alterna-
tive to BASIC. The fact that an assembly-listing is available
makes it especially beneficial to those of us who are interested
in delving into the inner workings of a high-level language and
perhaps modify it and/or extend to suit our whims. FOCAL includes
provisions for adding to the command language and makes interfacing
to machine language functions a piece of cake. BASIC offers mone
of this.

FOCAL is available from two sources at this time; ARESCO (P.O.

Box 43, Audubon, Pa 19407) and 6502 PROGRAM EXCHANCE (2920

Moana, Reno, NV 89509). They both offer FOCAL for about the same
price, however the Program Exchange has developed a library of

FOCAL programs including StarTrek, so I would highly recommend that
you get their flyer and see whats available (I think it costs 50c).
Also they have an excellent 104 page user manual which is available
for $12,.00., I just received it in time to mention it in this issue
and can recommend it as an effective means for becoming familiarized
with FOCAL operations.

Up to this point, the biggest single disadvantage of FOCAL has been
that there was no built-in way of saving and loading FOCAL pro-
grams using cassette or disc. Well, 1 have found a way to accom-
plish this and if you'll be patient I'll impart the knowledge to
you........(by the way, the absolute memory locations hold true
only for the Version 3D (and possibly FCL-65E) other implementa-
tions will have to know where their particular pointers are)......

SIMPLE!!1All you have to do is to save the pointers PBADR ($31,32)
and VARBEG ($3E,3F) and the data that is referenced indirectly be-
twveen them. For instance: PBADR points to $360A and VARBEG points
to $390F. Your storage device driver program should dump all data
from $360A to $390F and also the pointers themselves which must be
reinitialized when you re-load that particular program. How else is
FOCAL supposed to know where that program is???

No, 1 haven't actually written a cassette friver for FOCAL (I use
disc) but don't see any problem at all doing just that.. But, wait
a minute...before we all go off on our own and write our own ver-
sion of the ultimate FOCAL cassette handler, let's figure out some
sort of a "standard", 1 thing it's important to be able to work
with named records instead of our regular ID number. All we really
need to do is extend the ID portion of the KIM cassette format to
include a fixed number of ASCII characters (say 8) and include an
area for the pointer information that we need. 1It's necessary that
we have some proposals by the next issue s0 we can get started on
our driver software, As far as the command extension to FOCAL is
concerned, let's reserve the letters "K" for KEEP (which will save
the program on cassette) and "L" for LOAD (which will load a pro-
gram from cassette into memory).

We may want to use a binary recording format for increased speed
and could probably "1ift" some of the code from the cassette driver
presented in issue #7/8 (written by John Oliver).

More next time. Got any ideas about FOCAL that you'd like to share?

e e o e e e ok

LANGUAGE LAB:
focal

At this point in time, FOCAL is the most doc-
umented of the high level languages which run on
our beloved 6502, Having a complete source liat-
ing is definitely invaluable,

This openness on the part of the implementor
has made it so easy to fidget around with FOCALs
internala and even fix a problem or two.

One of the things that did sort of annoy me
was the almost 1 character delay encountered when
typing in FOCAL program text from a hard-copy term-
inal. {I have the Aresco version).

As it turms our, thanks to the source listing,
I found that FOCALs author did some elaborate arm
waving to prevent KIM from echoing the character
which has been input to the TTY port. No small
feat, I might add, since KIM echoes the tty input
in hardware (not software!).

(If you're wondering how - FOCAL makes the
terminal think that the character getting echoed

is a RUBOUT character - which the terminal ignores).

Anyhow, I don't quite know why FGCAL bothers
to do this - the character ends up getting echoed
in sofrware anyway. (There is a function which
does enable to echo to be shut off completely),

Make the following changes to FOCAL., This
patch was found in the FOCAL User Manual ($12.00
from the 6502 Program Exchange) and was apparently
an update for FCL-65E.

34AA B4 A5 ouT STY SAVYR

; save "¥Y"
J4AcC 20 AO 1E JSR OUTCH
34AF A4 AS LDY SAVYR

ijrestore “Y"
3481 18 cLC

; indicate success
34B2 60 RTS

; return
34B3 E6 76 IN INC HASH

jbump random seed
I4BS ¢ 40 17 BIT SAD

. ; test input port

34B8 30 F9 BMI IN

; loop '"til start bit
34BA A5 6B LDA ECHFLG

; get echo flag
J4BC DO 03 BNE NOECH

; branch for no echo
34BE 4C 5A 1E JMP GETCH

; get character with

echo

3J4cCl AD 42 17 NOECH LDA SBD
i get port status

34Ch 2% FE AND #FE

; turn off bit
34Cé 8D 42 17 STA SBD
34C9 20 S5A 1E JSR GETCH
34cce 48 PHA

; Bave character
J4CD AD 42 17 LDA SBD

; get port status
34D0 09 01 ORA #01

; turn om bit
j4n2 8D 42 17 STA SBD

; make echo a rubout
34D5 A9 00 LDA #0

; get a null character
34D6 20 AOQ 1E JSR OUTCH

; echo it
34D9 68 PLA

; restore input char.
34DA 18 CLC

; indicate success
34DB 60 RTS

; return
page 10

28F2 EA EA EA was 20 02 29
35B4 B3 was A5

Faster typists will really notice & difference.

A really neat feature of FOCAL is the fact
that you can n2dd specialized functions.

Function calls consist of four (or fewer) let-
ters beginning with the letter "F" and followed by
a2 parenthetical expression which may contain an
argument to be passed to the funcrion.

There are a number of functions which are in-
cluded in FOCAL, such as:

FINT - returns the integer portion of a
number

FABS - returns the absolute value of a
number

FMEM - allows one to examine or deposit
into a memory location.

FOCAL decides which function is being called
by performing a "HASHING" of the function name and
searching for that value in a function dipatch
table. U[Using hash codes simplifies the lookup
table design structure quite a bit. It may even
speed things up a bit also.

If you wish to install your own functions, the
hash code for the particular function name and the
function address must be installed in the extra
space provided in the lookup table.

Figuring out the hash code for your function
is not so easy, hawever, unless you use FOCAL it-
self to do the computationm.

In version 3D, place a BRK or JMP KIM at lo-
cation $29EF. Then execute the following command:
SET X = F777(1)
where F???7 ig your new function
name (FADC for example) and (1)
is there because you need a par-
ameter of some sort.

Program control will then be returned to RIM,
or wherever your BRK vector pointed, and the hash
code will be found in location $0065 as well as
the Accumulator amnd the "X" repister.

Several readers are preparing articles on FO-
CAL additions and modifications, so we have alor
to look forward to in this section.

I just saw the latest Dr. Dobbs Journal at
the newstand (computer store newstand, that is)
and noticed that they published a rather large
FOCAL program. (I don't recall the issue pumber).

Do YQU have any FOCAL articles or programs
that you'd like to see in print? Then send 'ew in.

I highly recommend the $12.00 FOCAL USER MAN-
UAL from the 6502 Program Exchange to those who
are learning to program in this language as well
as those who are just curious and perhaps want to
see how FOCAL compares to BASLG.

At the present time, FOCAL for the 6502 is
available from two sources, Write to them for
pricing and availablity.

ARESCO 6502 Program Exchange

PO BOX 43 2920 Moana

Audobon, PA Reno, Nevada B9509
13407

focal

Lots of neat mods are in store for FOCAL.
We're going to add a cassette save & load facility,
a Basic-like data statement, output to KIM's seven
segment display, the ability to handle arrays of
strings, an improved print command, & machine lan-
guage subroutine call and a few minor fixits and
speed-up mods,

Before we do all this, however, we need some
room, The present size of the Aresco V3D is about
6K so let's stretch it out to an even BK and give
ourselves a little breathing reoom. If you examine
the listings (love them listings!), you'll notice
that the user program must start rtight after Focal
because of line number 00.00 at $35EB,.

(One problem: all these mods pertain to V3D
which is distributed by Aresco and not necessarily
to FCL-65E which is distributed by 6502 Program
Exchange. The symbolic addressing info might per-
tain to FCL-65E but since I don't have a listing
of FCL-65E, I can't be sure. FCL-65E might be an
updated version of V3D but I can't be sure).

Extend V3D FOCAL to 8K by moving $35EB through
$360A to $3FEO0-$3FFF. This moves the line 0.0
startup message to the top of the 8K block that
will be used by FCCAL. Some zero page pointers
must also be changed to allow for the above mod.

change: TEXTBEG $002F FROM $SEB TO SEO
$0030 FROM $35 TO S3F
PBADR $0031 FROM $09 TO S$FE
50032 FROM $36 TO $3F
VARBEG $O003E FROM $0A TO SFF
$003F FROM $36 TO S3F
VARST $0040 FROM $0A TO SFF
$0041 FROM $36 TO S$3F
VAREND §$0042 FROM $0A TO SFF
$0043 FROM $36 TO S$3F

PDLIST $0053 KO CHANGE
$0054 FROM $3F TO $5F

This is the FOCAL pushdown stack and should
be set to some convenient page up out of the way
of FOCAL programs. $5F assumes a 16K system.

Another thing that must be improved is the
way FOCAL sets up zero-page. Actually, it doesn't.
I really can't understand why the impleémenters
overlooked this problem, Oh well...it's easy to
fix. At $3F00 add the following zero page intial-
ization routine. $3F00 will become the new cold
start address.

ZPAGE

ZSTORE

LENGTH

STARTF

*=$3F00
CSTART LDX #0 ; LNITS THE LOOP COUNTER
ZLOOP LDA ZSTORE,X ; START MOVING DATA

STA ZPAGE,X

INX

CPX #LENGTH+1

BNE ZLOGP

JMP STARTF ; PAGE IS SET UP

. GO TO FOCAL

$0

$3F10

$BF ; NUMBER OF BYTES
$2000

-)

Ok now, we have stretched out FOCAL to 8K and
added a 2 page initialization routine, What next?
We'll start adding mods from $35EB-$3EFF.

More next time,......

focal

EOCAL MODS

from Bernhard Mulder
Mozart Str 1
6744 Kandel
West Germany

«...8peed 1t up
a little...

i We change the procedure EATCR (and EATCR1)
which is called by the findline, which in turn is
called from the GOTO, IF, ON, DO command routines,

We sssume that the carriage returnm char is in
memory and avoid the call of the routine GETC,
where switches are tested which will never be set,
when we caome from EATCR (start the following rou-

tine at $26D0 in the Aresco versionm 3D and $26DD in

the "6502 Program Exchange" FCL-65E (V3D).

Cé6 2a ECR1 DEC TXTP ;EATCPY
A4 2a EACR LDY TXTP ;EATCR
A9 0D LDA #0D ;load CR which we are

looking for

DO 01 BNE TST1

c8 LABL INY ;next character in line
D1 28 TSTL CMP (TXTA),Y;C.R. found already?

DO F8 BNE LABL ;branch if noy

Bl 28 LDA (TXTA),Y;store away for others
85 2B STA CHAR

ce INY

98 TYA jcalculate addreasas

part CR.

focal

First of all, I want to thank Dave and Don
Marsh from the 6502 Program Exchange (2920 Moana
Ln,, Reno NV 89509} for providing me with the
source listing for their version of FCL-G5E. The

listing has been invaluable in getting all the mods
set up for both versions of FOCAL (one from Aresco
and the other from the Program Exchange).

By the way, both versions must be suitably
modified as per issue #14 in order to usec the mod-
ifications that will be presented. Program Ex-
change FCL-65E users need to move the start up
message at line 00.00 to the top of the 8K block
by moving the data at $35D4 through $35F3 to start
at $3FEO.

In trying to cooordinate these mods across two
versions of FOCAL, I've run across a zero-page us-
age preblem in the Program Exchange versionms. This
version uses about 50 bytes of zero-page for term-
inal 1/0. (According to the exchange, this was
done to make FOCAL more portable between different
machines). Anyhow, the long and short of it is -
these 1/0 routines will have to be moved back into
FOCAL to allow freer use of zero page.

Once the line 0.0 has be¢n moved up to the
top of the 8K block, the I/0 routines from $00A9-
$00DC can be moved to start at location $35D4, Of
course, the internal references to OUT and IN will
have tc be changed to reflect the changes.

18 CLC

65 28 ADC TXTA
85 28 STA TXTA
85 33 STA TXAZ
AS 29 LDA TXT1
69 00 ADC #00

85 29 STA TXTl
85 34 STA TA21
A9 00 LDA #00

85 2A STA TXTP
85 35 STA TXP2
60 ENCR RTS

Make the following changes to Aresco V3D

208D 20 DO 26 (was 20 D7 26)
21FF 20 DO 26 (was 20 D7 26)
22ELl 20 DO 26 (was 20 D7 26)
2752 20 D2 26 (was 20 DO 26)

or make the following changes to the Program Ex-
change FCL-65E

208D 20 DD 26 (was 20 E& 26)
21FF 20 DD 26 (was 20 E& 26)
22E3 20 DD 26 (was 20 E4 26)
275F 20 DF 26 {(was 20 DD 26)

Those of you with ROR instructions in your
CPU can eliminate the ROR simulator in FOCAL with
the follawing code.

Start at $3291 for the Aresco version 3D
Start at §$3293 for the Program Exchange FCL-65E

7E 89 00 RORL ROR EP4,X ;need not simulate ROR
EB INX

DO FA BNE ROR1

60 RTS

Plenty more mods in store for FOCAL. Until
next issue.

FOCAL ENHANCEMENT PACKAGE

The 'NOTES' is nnw distributing a very useful

FOCAL enhancement package that will let you save
and load complete FOCAL programs on cassetrte as
well as lines or groups of limes and/or program
variables, Commands may also be executed directly
from cassette The package was written by Jee
Woodard For ordering info, see the cassette
software ad in this issue,

ADDING A CASSETTE INTERFACE AND A USER FUNCTION TO
6502 PROCRAM EXCHANGE'S FOCAL 65-~E

by William C, Clements, Jr.
1489 SI1ST Ave East
Tuscaloosa Al 35404

The FOCAL language is really a good alterna-
tive to BASIC, at least for KIM users. Of course,
it doesn't have everything. The features I missed
the most were a cassette interface and the ahility
to exccute a machine-language routine within a
FOCAL program This arricle shows how to add tape
Load and Keep commands and how to implement a
"user" function similar to that of TINY BASIC.

The modifications apply to FOCAL-65 (V3ID) for the
KIM-1 as supplied by the 6502 Program Exchange.

Listing 1 gives the code needed to add the
cassette interface commands. I began it directly
after the FOCAL interpreter, because I had moved
the RAM allocation for program text and variables
to another area. It can go anywhere in memory that
you wish, with simple relocation and listing the
addresses of routines KEEP and LOAD in FOCAL's
command dispatch tables. The cassette Load com=-
mand enters the regular KIM monitor at $1873, and
the Kecep command uses a Hypertape routine in my
system; it's almost a necessity to use a cassette
dump routine faster than KIM's, since the memory
required to store the FOCAL program statements in
ASCII form can be large.

The tape operations could have been done us-
ing the existing I-0 handlers Provided in FOCAL,
but I preferred to use conventional commands. The
form of the commands is L xx to lead a file having
hexadecimal i.d. "xx" and K xx to record a file
with i.d. "xx" onto tape.

Readers who have program control of their tape
recorders might want to use these commands inside
a FOCAL program to manipulate tape files, I can
only use them in the immediate execution mode,
since I have to push butténs on the recorder. The
KIM tape routines exit to loc. zero, which my code
sets up with a jump instructin, Hitting the G key
on the TTY after either tape operation is through
will get you back into FOCAL. All starting and
ending address for the tape files are automatically
set by the routines, including the final address
after loading a file.

The Keep routine uses Hypertape stored in my
system at loc. $C400; the jump at location TAPOUT
will need to be fixed by the user to suit his own
system, The jump in loc. zero restarts FOCAL at
its cold start, as that's the only way I can use
it. If you want to get back into the middle of
an executing FOCAL program, the jump at location
JMPFOC and the data bytes at locations ADLOW and

az,a,,and a, are optional. a,, if present, will be
evaluated and the least sign‘iicant eight bits
stored in the accumulator before executing the
user's code. a4, and a,, if present, are similarly
evaluated and p;aced in the X and Y registers, res-
pectively. Thus up to three bytes may he trans=-
mitted directly from the FOCAL program to the ma-
chine code (more of course can be transmitted in

either direction by using FOCAL's version of PEEK
and POKE, the FMEM function). The arguments can

be constants, simple variables, or any other legal
FOCAL expressions, and as such have decimal values.

As examples, the statement S FUSR(8192,0,16,
10) will cause a jump to location $2000 with zero
in A, $10 in X, and $0A in Y. The statements

1.1 §

1.2 s B=13
1.3 S FUSR(625-(A+B),,B,)

would jump to $200 with $S0D in X, Note that there
are always three commas, as FOCAL uses them to tell
which argument is which. If you want the variable
FUSR itself to have a numerical value after its
execution such as FRAN or FABS do, you can have
your machine code put that value into the floating
accumulator FAC1 (locs. $80-83 - see p. 7 of the
6502 Program Exchange's listing of FOCAL 65-E).
Your machine code must transfer control to loc.
FPOPJ (in FOCAL) when it is ready to re-enter FO-
CAL, and it will return to the point in your FO-
CAL program where FUSR was invoked. Listing 2
gives the machine code needed for adding FUSR to
FOCAL.

The changes required within the tables of the
FOCAL interpreter to make it recognize K. L, and
FUSR and to execute the codes in Listings 1 and 2
are given now. The format follows that of the
original listing of FOCAL.

ARESCO PROGR. EXCH

ADHIGH will have to be changed. $3508B $34F4 18 BYTE HFUSR
3527 3510 36 HBYTE FUSR
The "user" function works like the one in 3543 352¢ 41 BYTE FUSR
TINY BASIC; it allows user-supplied machine code 3557 3540 4B ASCII 'K'
to be executed as a FOCAL function. The FOCAL code 3558 3541 4C ASCII 'L’
to invoke it is S FUSR (al-az'aj"é)' where the 356B 3554 36 HBYTE KEEP
a's are the four arguments. The first, a;, must 356C 3555 36 HBYTE LOAD
always be present because it is the address to which 357D 3566 04 BYTE KEEP
the program will jump to begin the user's code, 357E 3567 33 BYTE LOAD
0010 2000 FCASSETTE INTERFACE AND USER FUNCTION MODS
0020 2000 iFOR FOCAL FROM W, CLEMENTS 1979
0030 2000
0040 2000 FKIM LOCATIONS
0050 2000 FACK =$1FAC
0060 2000 In =$17F%
0070 2000 FREG =$f1
0080 2000 INL =sF8
0090 2000 SAL =817F5
0100 2000 SAH =$17Fé
0110 2000 EAL =$17F7
0120 2000 EAH =$17F8
0130 2000 LOADT =%1873
9140 2000 VER =$17EC
0150 2000 HYFER =$0200 FADDRESS DF HYPERTAFE ROUTINE
0160 2000
017¢ 2000 iFOCAL LOCATIONS
1R 2000 FOCAL =¢2000
0190 2000 GSPNDK =%29A3 F($29E1 IN ARESCO VERSION)
0200 2000 FBANR =$31
0210 2000 VARBEG =$3E
0220 2000 INTGER =$2F8% F($2F93 IN ARESCD VERSION)
0230 2000
- 2000
2000 5 (82FBY IN ARESCD VERSION)
2000
2000 FMOD LOCATIONS
¢80 2000 =30
009G 0000 JMFCOM k=%47 # JUMF VECTOR IN ZEROD FAGE
nino Qou NAKGS #=%41 +NUMHER 0OF ARGS 1IN USK
0310 0002 SAVA X=¥41
0320 0004 AV k=4l

0330 0007

/5

2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
O0A9
00AA
00AB
00AC
QO0ALD
O00AD
00AD
00AT
00ADN
36R0
346H0
3600
346KE1

346H3
346
3489
34HA
J4BC
34RE
34C1

34CAa
346C6
3408
36CA
36CE
J&CD
34600
34602
346D4
3406
3608
3409
340A
3s60C
346DF
36E2

01
0A
09

06
FS
10
OF
01
A?

F9
E3
AR
F?
AC

FS

00
a1
42

37
37

37
37

36

#+THIS ROUTINE MAKES KIMS LEDS ANOTHER
#OUTFUT DEVICE FOR FOCAL
FWRITTEN RY BERNHARD MULDER

- W

MDZARTSTR 1
46744 KANDEL

WEST GERMANY

#THE STARTING ADDRESS FOR THIS ROUTINE

FMUST

BE FLACED INTO FOCALS OUTFUT

iDEVICE TABLE SO FOCAL KNOWS WHERE IT IS.

’

#IN THE ARESCO VERSIONs FPUT THE HIGH ORDER
#+BYTE OF THE STARTING ADDRESS FOR THE LED
#DUTFUT ROUTINE IN LOCATION $35BB AND THE
iLOW ORDER ADI'RESS IN $35C0. IN THE 4502
iFROGRAM EXCHANGE VERSION OF FCL-65Es THIS
sWOULD CORRESFOND TO LOCATIONS $35A4 AND

i$35A% RESFECTIVELY.

#TD USE THE LEDS A5 AN OUTPUT DEVICE.,
#SIMPLY OUTFUT TO DEVICE #2 BY

JEXECUTING

‘S FODV (2)’. ALL SUBRSEGUENT

#OUTFPUT WILL BE SENT TO THE DISPLAYS.

]
FAnD
SBI
SAD

i ZERDO FAGE LOCATIONS

SPE1
SFE2
SPE3
SFE4

=$1741
=$1742
=$1740

X=$A9
*=%+1
x=xk+1
=%+l
k=x+1

#THESE TWO CELLS CONTROL THE DISPLAY
ISPEED OF KIMS 7 SEGMENT DISFLAYS

#START THIS ROUTINE RIGHT AFTER THE CASSETTE

FAND USER FUNCTION MODS

SEVS

SEV1

ENRY
ENR1

ENR3

ZEI2

¥=336B0
«OFF 2000

TAY

LDX #s1
LDA DISPsX
STA DIS«X
INX

CFX #%6
BNE SEV1
LDA TABE-Y
STA DISFP+5S
LDX #$1
LDA SPE1+X
STA SPE3+X
DEX

BFL ENR1
JSR ZEI1
DEC SFE3
ENE ENR3
DEC SFE4
BNE ENR3
cLC

RTS

LDY #$%0
STY PADD
STY SBD
RTS

P ¥XXBEWAREXXXNON-ROMABLE CODE HERE! 1!

iDISPLAY

fFINISH WITH NO ERRORS

J4E3
36E6
36EB
J6EB
J4ED
34F0
346F3
34&4F &
36F7
346F8
36FA
36FB
34FD
36FE
3&6FF
3700
3701
3702
3704
3706
3709
370A
370A
370B
l70C
370D
370E
370F
3710
3710
3710
3710
3710
3711
3712
3713
3714
3715
3716
3717

00
00
00
00
00
00
00
o0

ZEI2
#$7F
PADD
#37

SBED

DISFsY
SAD

#$7F

ZEI4

86
ZEI3
ZEI2

JALL RISPLAYS OFF

$DELAY ABDUT 500 CYCLES

FALL DIGITS FINISHED %

FALL OUT
+DIS=DISF-1

+BYTE 0»0s0r050+0

#HERES THE TABLE WITH THE SEVEN SEGMENT

ASCII CODE=TABLE INDEX

+BYTE 0+0+0r0+0+0¢0¢0

DA 36 ZEI1 JSK
7F LDA
1 17 STA
09 LDX
42 17 ZEI3 STX
oA 37 LDA
40 17 STA
TYA
PHA
7F LDY
ZEI4 DEY
FO BNE
FLA
TAY
INY
INX
INX
06 CPY
E7 BNE
DA 34 JSR
nIs RTS

DISF

fCODES.
TABB
HEX DUALF

STHRTS HERE
TO SAVE
oOF THE
3710 CC 00 00 0O
3720 00 00 00 00
3730 88 8A A2 00
3740 BF B4 DB CF
3750 00 F7 FC D8
3760 F3 E7 DO ED
3770 00 0C 00 00
3780 00 00 00 00

SAUCE. .. HERE'S 4 HEY

SEVEN SEGMENT Cope

00
00
R&
Eé
LE
FB
[e]0]
00

00
00
00
ED
F9

00
00

00
00
Cé
FD
F1
EA
00
00

o0
00
82
87
BD
BE
00

00

oo
oo
B9
FF
Fé
EE
00

00
00
8F

84
c?
00

00
00
64
Ci
?E
00
00
00

00
00
8c
00
BB

00
00

oo
00

C1
B7

oo
00

Qvrt P

1Nd1ng 037 wlod

7R E .

00
00
?8
00
D4
00
00
00

00
00
nz2
D3
nc
o0
00
00

0340 0005

0350 0005 }FOCAL MODS START HERE

03460 0005 *=¢35EB

0370 35EB .OFF 2000

0380 35EB 20 A3 29 SUR JSR GSPNOR $GET NEXT BLANK CHAR

0390 3SEE 20 AC 1F JSR PACK i CONVERT TO HEX AND STORE
0400 35F1 20 A3 29 JSR GSPNOR fREFEAT FOR

0410 35F4 20 AC 1F JSR PACK FNEXT DIGIT

0420 35F7 AS FB LDA INL

0430 35F9 8D F? 17 STA ID #SET TAPE ID

0440 35FC A9 4C LDA #¢%4C iSETUP JUMP LOCATION

0450 3IS5FE B85 00 STA JMPCOM i IN ZERO PAGE

04460 34600 A% 00 LDA #0 iCLEAR STATUS REG

0470 3402 B85 F1 STA PREG RTS FANDI RETURN

0480 3604

0490 34604 20 ER 35 KEEP JSR SUB §¥SET ID ETC

0500 34607 AS 31 LDA PBADR FSET KIM

0510 3609 8D F5 17 STA SAL i TAFE REGISTERS

0520 340C AS 32 LDA PBADR+1

0530 340E 8D Fé& 17 8§TA SAH

0540 3611 AS 3E LDA VARBEG

0550 3613 8L F7 17 STA EAL

0560 3616 A5 3F : LDA VARBEG+1

0570 3418 8D F8 17 STA EAH

0580 361B A7 00 ADRLOW LDA #<FOCAL

0590 361D 85 01 STA JHPCOM+1 FMAKE JUMP INSTR. A

0600 361F A7 20 ADRHI LDA #>FODCAL FiRETURN TO COLDSTART

0610 3621 B85 02 STA JMPCOM+2

0620 3623 4C 00 02 TAFOUT JMP HYPER

04630 3626

0640 3626 AD ED 17 ENLDAD LDA VEB+1 iSET ADDRESS AT END OF
0450 3429 85 3F STA VARBEG yFROGRAM TEXT

0660 342E AD EE 17 LDA VEB+2

0470 342E B85 3F STA VARBEG+1

0480 3630 4C 00 20 JMPFOC JMP FOCAL {RETURN TO FOCAL

0690 3633

0700 3433 20 EBH 35 LOAD JSR SUB #SET ID ETC

0710 3634 A% 26 LDA #<ENLOAD FMAKE JUMF FODINT TO

0720 34638 85 01 STA JMPCOM+1 #THE REST OF THE TAPE
0730 3463A A% 36 LDA #>ENLOAD #LOAD ROUTINE

0740 343C 85 02 STA JMFCOM42

0750 3&43E 4C 73 18 JMP LOADT iREAD THE CASSETTE

0760 3641

0770 3641 #NOW FOR THE ‘USR’ FUNCTION

0780 3641

0790 3441 A9 4AC FUSR LDA #%4C $SET UF JUHMF LOC.

0800 3443 85 00 STA JMPCOM

0810 3445 20 85 2F JSR INTGER $FET FIRST ARG. IN FAC1
0820 3448 B85 01 STA JMPCOM+1 {REARRANGE LOW AND HIGH ORDER
0B30 344A AT B2 LDA M1+l #BYTES INTO JUMP LOCATION
0840 344C 85 02 STA JMPCOM+2 #THAT WILL EXECUTE USER CODE
0B850 344E A9 00 LDA #0 $ZEROD THE ARG. COUNTER
0B&0 3450 BS 02 STA NARGS

0870 3652 20 7A 34 JSR USRARG $EVALUATE AND SAVE HOWEVER MANY
08B0 3455 B4 03 STY SAVA #ARGUMENTS ARE LEFT

0890 3657 20 7A 36 JSR USRARG

0900 345A 84 04 STY SAVX

0910 345C 20 7A 36 JSR USRARG

0?20 3&5F AL 02 LDA NARGS

0930 34461 FO OF BEQ JMPUSR #JUMF TO USER’'S CODE IF NO MORE ARGS
0940 3663 C9 01 CHP #%1

0950 34465 FO 08B BEQ STAC #SET ‘A’=ARG» IF ONE ARG LEFT
0960 3467 (9 02 CHF #¢2

0970 34469 FO 09 BEQ STACX FSET ‘A‘=ARGl» 'X‘=ARG2 IF TWO LEFT
0980 3446B C% 03 CMFP #$3

0990 346t FO 05 BEQ STACX #GET ‘A‘=ARGls ‘X‘=ARG2» ’Y’=ARG3
1000 3&46F A5 03 STAC LDA SAVA FARG]1 IN A

1010 3671 4C 00 00 JMFUSR JMF JMFCOM #GO0 DO USER’S CONE

1020 3474 A5 04 STACX LDOA SAVUX

1030 3476 AA TAX

1040 3477 AC &F 36 JMF STAC

1050 3é67A

1060 367A AT 2B USRARG LDA CHAR #GET CURRENT CHARACTER
1070 3467C C9% 2C CHF % » sANDTHER ARGUMENT?

1080 3467E FO 04 BE@ GETARG iYES, GO GET IT

1090 3480 C9 29 CMF %) SENIU OF STATEMENTT

1100 346B2 FO 06 BEG RET sYESs RETURN NOW

1110 3é4B4

1120 32484 20 7R 2F GETARG J5K NXIAKG FFVALUATE NEXT ARG.

1130 34687 AB TaY

1140 34688 E& 02 INC NARDGS 3 COUNT ARGS FAST FIRST
1150 34BA 60 RET KTS sRETURN

11460 3468E

1176 34BR LEND

In Issuve #16, two bop-bYoos were found by. sharp
readers. 1 really goofed the Focal cassette inter-
face on page 15, In line 0150 of the listing, HY=~
PER snould pe addressea to $C400 (as in paragraph
4, page 15) not 50200. Also in that same listiug.
line 29¢ should reaa JMPCOM *=#*+3 (not JMPCCH
#=%x3+,y, Inat and the missing RTS instruction after
line 470 tnrough the whole thing otf., Herel!s a
hex aump of the corrected program.

35ER 20 A3 29 20 AC
35F0 IF 20 A3 29 20 AC IF AS FB BIr F$ 17 A9 4C 85

3600 A% 00 BYS F1 40 20 ER 35 A5 31 BD F5 17 AS 32
3610 Fé& 17 AT 3E 81 F7 17 AS 3IF 86 FB 17 A% 00 BS
3620 A9 20 85 02 4C 00 02 AD ED 17 BS 3E Al EE 17
3830 3F 4AC 00 20 20 ER 35 A? 27 BS 01 A9 34 8BS 02
3640 73 1B A% 4C B85 00 20 8S5 ZF 85 01 AS 82 85 02
3450 00 85 03 20 7B 36 B4 G4 20 7B 34 84 05 20 7
3660 A3 03 FO CE C9 ©1 FO OB C9 02 FO 09 L9 03 FO
3670 AS 04 4C 00 00 AS 05 AA 4C 70 36 AH 2B CP 2
3680 04 C%® 29 FO 0& 20 7F 2F AB E&6 03 60 I& I4 04
x

00

an
61
B85
Al
Ag

0s
FO
o0

